

Final Presentation

Project
Accessibility and Universal Design

Team Members

- Bilgin Kahraman Electrical-Electronics Engineering
- Julia Nazareth Ferreira Industrial Engineering
- Maïwen Belkalem Packaging Engineering
- Valentin Calzan Packaging Engineering
- Rachid El Ouad Human Technology
- Victor Marin Mechanical Engineering

EPS - Accessibility

Standing aids for Students with disabilities

The main aim is to improve the children's quality of life.

EPS - Accessibility17/06/14 ● 3

Table of Contents

- 1. Accessibility Chair
- 2. Project Description
- 3. Clients' Backgrounds
- 4. Selected Solution

Selection Criteria

Design

Materials

Testing and Improvement

5. Conclusion

EPS - Accessibility17/06/14 ● 4

Accessibility chair

- Promote & coordinate projects
- Help disabled people
 - Access to facilities
 - Use of technology
- Different approaches
 - o R&D
 - o Teaching
 - o Awareness

Project description

- Two students with disabilities associated with Accessibility Chair.
- Develop a mechanism to add to their existing wheelchairs.
- Find a solution to help our clients to stand up more easily.

SERGI'S PROFILE

- 17 years old
- Student in the Escuela el CIM of Vilanova

DIAGNOSIS

- Young cerebral paralysis:
 - tetraplegia
 - muscular tone affected
- Training everyday with a <u>bipedestador</u>
- Needs the help of 2 assistants to stand up

NEEDS

- Minimize the assistance he needs to stand up
- Minimize his efforts

■ EPS - Accessibility17/06/14 • 7

DARIO'S PROFILE

- 14 years old
- 75 kg weight and 1.62 meters high
- Student in the Col•legi Públic Baix a Mar of Vilanova i la Geltrú

DIAGNOSIS

- Spastic diplegia
 - generalized hypotonia
 - muscular strength affected in his lower limbs
- Can stand up alone with his arms' strength
- Able to walk thanks to a <u>metallic support</u>

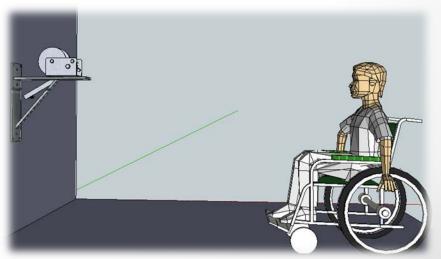
NEEDS

- Minimize his efforts to stand up
- Find a device to help him to be more autonomous

EPS - Accessibility17/06/14 ● 9

Selected Solution - Sergi

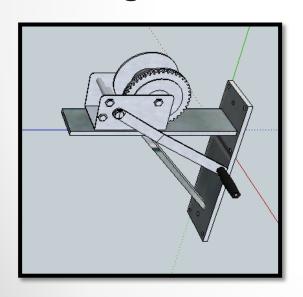
- From existing fishing stand-up system
- Can help Sergi to stand up gradually
 - Winch attached to the wall
 - o Harness pulled by the winch

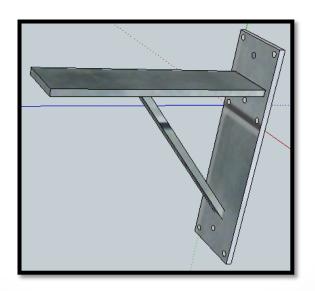

● EPS - Accessibility17/06/14 ● 11

Manual winch

Why did we choose this winch?

- Simple design
- Durable
- Easy to operate
- Low price
- Low maintenance





■ EPS - Accessibility17/06/14 • 12

Wall-mount

- Has to be sturdy
- Has to be easy to make
- Has to be strong enough to support Sergi's body weight

■ EPS - Accessibility17/06/14 • 13

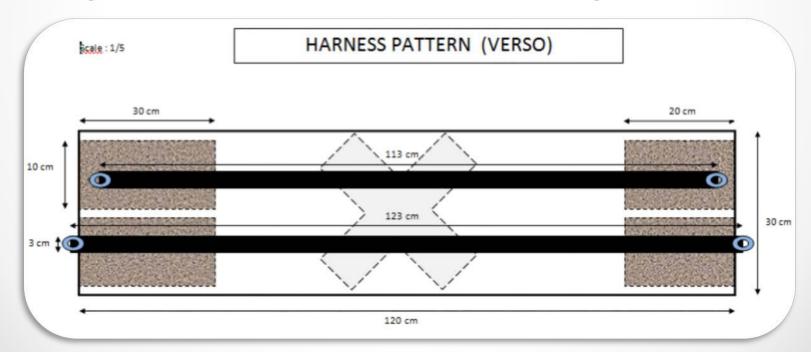
Harness

3 possibilities:

Buy an existing harness (climbing harness)

Av: homologated

Inc: Not 100% adapted, expensive

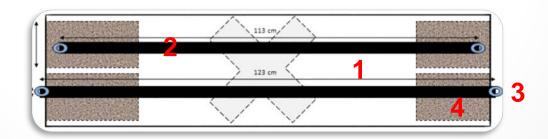

 Buy all the material and find a professional seamstress Inc: Hard to find all materials, expensive, long delays

Build the harness in collaboration with physiotherapists
 Av : cheapest solution, possibility to try it directly

● EPS - Accessibility17/06/14 ● 14

Design

- In collaboration with the physiotherapists:
 - o Take Sergi 's measurements
 - o Present our idea and select one
- Design the harness' pattern for sewing

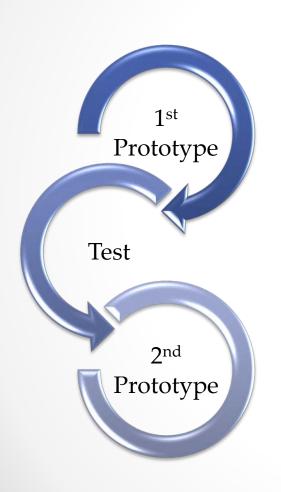


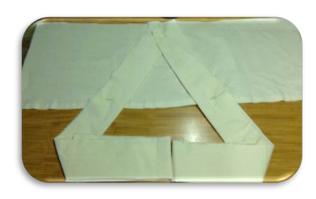
■ EPS - Accessibility
 17/06/14 • 15

Materials

The main materials were chosen accordingly to the availability of the school:

- 1. Fabric: Cotton
- 2. Straps: Polyester Nylon
- 3. Attached point: Steel Rings
- 4. Closing: Velcro




17/06/14 • 16

EPS - Accessibility

^{*}Ergonomics was taken into account.

Testing And Improvement

Testing And Improvement

Winch

• Harness

3rd Prototype

Test

• Final

EPS - Accessibility
 17/06/14 ● 18

Testing

■ EPS - Accessibility17/06/14 • 19

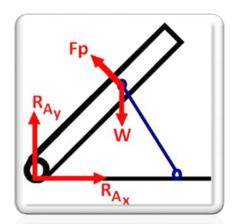
Selected Solution - Dario

Main Objectives solve:

- Help Dario to stand up gradually out of his wheelchair and transfer to stander.
- Could stand up alone
- → Auto-sufficient system
- Raise up more than 70%
- Prevents problems reducing pressures on joints and muscles with prolonged use

Selection Criteria

Buy an existing assistive-seats & modify it

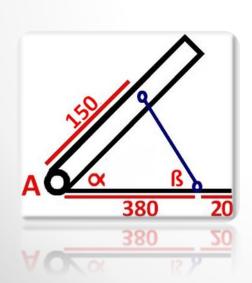


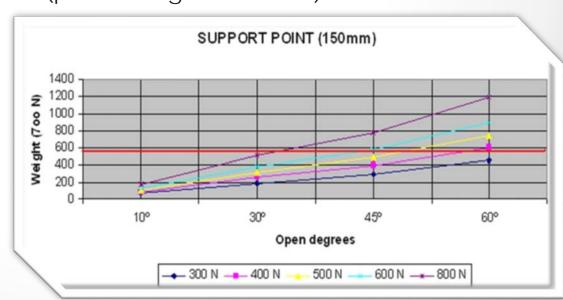
Build an elevator seat & adapt it

Design

Mechanism performance (70%-80% weight)

Seat design



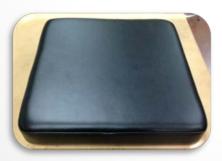

Performance

To solve this challenge, it is necessary to know:

- Body weight of 75kg
- ➤ Best distance between support point and reference point
- Performance (70%-80% weight)

Force and length piston(piston range in market)

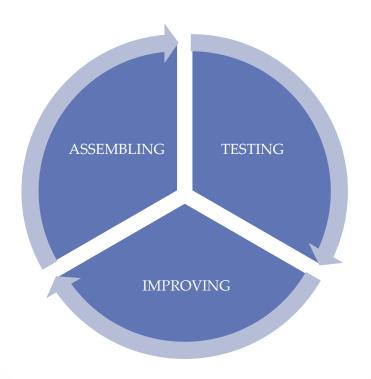
Design


- Important aspects to design prototype:
 - ✓ Ergonomic
 - ✓ Comfortable
 - ✓ Attractive design
 - ✓ Quality materials & sustainable
 - ✓ be portable & lightweight
 - √ Safe(non-slip material)
 - ✓ Try to maximize resources

Materials

 There are four components necessary to make a new seat:

- o Pneumatic Piston
- o Wood
- o Supporting Piston
 - Box of Screws
 - Metal Hinges
- o Foam and Textile



EPS - Accessibility
 17/06/14 ● 25

Testing And Improvement

■ EPS - Accessibility17/06/14 • 26

Testing and Improvement

1st prototype

2nd Prototype

Prototype Testing

■ EPS - Accessibility17/06/14 ■ 28

Next steps

Elevator seat:

- Modify for easy transport
- Find more sustainable materials.

Harness and winch:

- Bipedestador must be more stable
- The winch should be adapted to transport more easily

Thank you for your attention

